Entropy-based convergence rates of greedy algorithms
报告人:李雨文(浙江大学)
时间:2024-03-20 10:15-11:15
地点:智华楼四元厅-225
Abstract: Greedy algorithms are ubiquitous in computational mathematics. In this talk, I will present novel convergence estimates of greedy algorithms including the reduced basis method for parametrized PDEs, the empirical interpolation method for approximating parametric functions, and the orthogonal/Chebyshev greedy algorithms for nonlinear dictionary approximation. The proposed convergence rates are all based on the metric entropy of underlying compact sets. This talk is partially based on joint works Jonathan Siegel.
About the Speaker: 李雨文博士本科和硕士毕业于南京大学,2019年在加州大学圣迭戈分校获得数学博士学位。之后他2019-2022年在宾州州立大学担任Chowla研究助理教授。他目前在浙江大学tyc234cc 太阳成集团任百人计划研究员。他的主要研究方向包括有限元法的数学理论、自适应算法、快速求解器等。他的主要研究成果发表于SINUM、MathComp、M3AS、FoCM等计算数学期刊。